Supplement: Scope of practice for radiologic technologists

Background

Radiologic technologists are medical professionals who perform diagnostic imaging and provide radiation treatments to patients with cancer and other diseases. While the bulk of radiologic technologists work in hospitals, they can also be found in physician offices and diagnostic imaging centers.

Radiologic technologists may seek specialized training in a specific type of diagnostic imaging, such as:
➤ Ultrasound
➤ CT
➤ Mammography
➤ MRI
➤ Nuclear medicine
➤ Cardiovascular interventional radiology
➤ Bone densitometry

Radiologic technologists may complete one of several educational pathways:
➤ Two-year program based in hospitals, earning a certificate upon graduation
➤ Two-year program at community colleges or technical schools, earning an associate degree
➤ Four-year program at universities and colleges, graduating with a bachelor’s degree

Upon completion of training, radiologic technologists may seek certification, which is sometimes required by employers. Depending on the state they will be practicing in, they may also need to be licensed (currently, 41 states have this requirement).

For more information on nuclear technologists, please see Clinical Privilege White Paper, Nuclear medicine technologist—Practice area 200.

Involved specialties

Involved specialties for radiologic technologists include cardiovascular interventional technology, CT technology, MR technology, mammography, ultrasonography, and radiation therapy.
Positions of certification boards

ARRT

The American Registry of Radiologic Technologists (ARRT) is a credentialing organization that certifies and registers radiologic technologists. Certification is the initial stamp of approval that the individual has met ARRT standards to practice as a radiologic technologist. Once they obtain certification, individuals must register with ARRT annually and meet continuing education requirements.

Currently, 37 states use ARRT examinations to award state licenses to radiologic technologists.

Those states include the following:

- Arizona
- Arkansas
- California
- Colorado
- Connecticut
- Delaware
- Florida
- Hawaii
- Illinois
- Indiana
- Iowa
- Kentucky
- Louisiana
- Maine
- Maryland
- Massachusetts
- Minnesota
- Mississippi
- Montana
- Nebraska
- New Jersey
- New Mexico
- New York
- Ohio
- Oregon
- Pennsylvania
- Rhode Island
- South Carolina
- Tennessee
- Texas
- Utah
- Vermont
- Virginia
- Washington
- West Virginia
- Wisconsin
- Wyoming

Note: Administration of licensing laws differs from state to state. Some require that a state application be submitted prior to the examination administration, while others require only ARRT examination results. Direct any questions about licensing requirements to the individual state.

ARRT has two pathways to certification: primary pathway certification and post-primary pathway certification. ARRT awards primary certification in the following categories:

- Radiography
- Radiation therapy
- Nuclear medicine technology
- MRI
- Sonography
- Nuclear medicine
To attain primary certification, the candidate must have successfully completed an accredited educational program (note that ARRT must approve the accrediting agency) within the past five years. As of January 1, 2015, candidates seeking primary certification will need to earn an academic degree to qualify for certification.

Candidates must also meet clinical and ethical standards and pass a certification examination. Candidates must maintain certification through ongoing registration and compliance with ARRT rules and regulations, ethics, and continuing education requirements.

In addition to primary pathway certification, ARRT also offers post-primary pathway certification for radiologic technologists who want to specialize in the following:
- Mammography
- CT
- MRI
- Quality management
- Cardiac interventional radiography
- Vascular interventional radiography
- Sonography
- Cardiovascular sonography
- Breast sonography

An individual seeking post-primary certification must hold primary pathway registration either with ARRT, the Nuclear Medicine Technology Certification Board, or the American Registry for Diagnostic Medical Sonography (ARDMS). For more information regarding ARRT's requirements for primary and post-primary certification, including clinical requirements, please visit www.arrt.org/Certification.

ARDMS

ARDMS offers certification in sonography. Candidates can earn the following credentials, among others:
- Registered Diagnostic Medical Sonographer (RDMS)
- Registered Diagnostic Cardiac Sonographer (RDCS)
- Registered Vascular Technologist (RVT)
- Registered in Musculoskeletal (RMSK), available in 2012
- Registered Physician in Vascular Interpretation (RPVI)

Candidates must meet prerequisites and pass two comprehensive examinations: a physics examination and a specialty examination. Review the examination eligibility requirements for each sonography certification at http://ardms.org/credentials_examinations.
CCI
Cardiovascular Credentialing International (CCI) offers certification in cardiovascular ultrasound. Candidates can earn the following credentials, among others:
➤ Registered Congenital Cardiac Sonographer (RCCS)
➤ Registered Cardiac Sonographer (RCS)
➤ Registered Vascular Sonographer (RVS)

In order to maintain certification, ultrasonographers must earn a minimum of 30 qualifying CME credits in a three-year period.

Positions of societies, academies, colleges, and associations

ASRT
The American Society of Radiologic Technologists (ASRT) represents all medical imaging technologists, regardless of their area of practice. The ASRT publishes a general scope of practice for all radiologic technologists.

According to the ASRT, the scope of practice of the medical imaging and radiation therapy professional includes:
➤ Receiving, relaying, and documenting verbal, written, and electronic orders in the patient’s medical record
➤ Corroborating the patient’s clinical history with the procedure, ensuring information is documented and available for use by a licensed independent practitioner (LIP)
➤ Verifying informed consent
➤ Assuming responsibility for patient needs during procedures
➤ Preparing patients for procedures
➤ Applying principles of ALARA (As low as reasonably achievable) to minimize exposure to patient, self, and others
➤ Performing venipuncture as prescribed by a LIP
➤ Starting and maintaining IV access as prescribed by a LIP
➤ Identifying, preparing, and/or administering medications as prescribed by a LIP
➤ Evaluating images for technical quality, ensuring proper identification is recorded
➤ Identifying and managing emergency situations
➤ Providing education
➤ Educating and monitoring students and other healthcare providers
➤ Performing ongoing quality assurance activities

The ASRT also publishes scopes of practice for the areas radiologic technologists specialize in.

The ASRT describes the scope of practice for cardiovascular interventional radiologic technologists to include the following:
➤ Performing cardiovascular interventional procedures as prescribed by a LIP
➤ Determining radiographic technique exposure factors
➤ Assisting the LIP with fluoroscopic and specialized interventional radiography procedures
➤ Performing non-interpretive fluoroscopic procedures as prescribed by a LIP
➤ Starting and maintaining intra-arterial access as prescribed by a LIP
➤ Participating in physiologic monitoring of patients
➤ Performing manual and mechanical hemostasis, including the use of closure devices, as prescribed by a LIP
➤ Placing, maintaining, and removing peripherally inserted central catheters as prescribed by a LIP

The ASRT describes the scope of practice for CT to include the following:
➤ Introducing oneself appropriately to the patient and putting the patient at ease
➤ Performing CT procedures as prescribed by a LIP
➤ Assisting with interventional CT procedures and applying appropriate aseptic surgical technique as needed, following the direction of a LIP
➤ Maintaining archival storage of digitized data as appropriate and documenting patient dose exposures
➤ Assisting in maintaining patient records, respecting confidentiality and established policy

The ASRT describes the scope of practice for limited x-ray machine operators to include the following:
➤ Performing radiographic procedures (limited to education or the specific area of anatomical interest based on training and licensure/certification) as prescribed by a LIP
➤ Assisting a LIP or radiologic technologist during radiographic procedures
➤ Determining radiographic technique exposure factors
➤ Evaluating images for positioning, centering, appropriate anatomy, and overall image quality
➤ Assisting the LIP or radiologic technologist in providing patient education
➤ Applying the principles of patient safety during all aspects of radiographic procedures, including assisting and transporting patients

The ASRT describes the scope of practice for MRI to include the following:
➤ Performing procedures or examinations under the order of a LIP for diagnostic interpretation or therapeutic intervention
➤ Applying principles of MR safety to minimize risk to patient, self, and others
➤ Selecting appropriate pulse sequences with consideration given to established protocols and other factors influencing data acquisition parameters
➤ Assisting the LIP with interventional procedures
➤ Manipulating and reconstructing digital data for display or hard copy records, ensuring proper identification is evident
➤ Maintaining archival storage of digital data as appropriate
The ASRT describes the scope of practice of the mammography technologist to include:
➤ Performing breast imaging procedures
➤ Determining radiographic technique exposure factors
➤ Performing radiography of pathologic breast specimens
➤ Providing or assisting with physical breast inspection or palpation
➤ Assisting in maintaining medical records, respecting confidentiality and established policy

Note: All radiologic technologists performing mammography in a Mammography Quality Standards Act and Program (MQSA)-certified facility must complete a total of 15 mammography credits during a 36-month period as determined by the last date of inspection as well as any state mammography CME requirements. For more about the MQSA, visit http://www.fda.gov/Radiation-EmittingProducts/MammographyQualityStandardsActandProgram/default.htm.

The ASRT describes the scope of practice for radiographers to include the following:
➤ Performing diagnostic radiographic procedures
➤ Determining radiographic technique exposure factors
➤ Assisting a LIP with fluoroscopic and specialized interventional radiography procedures
➤ Performing non-interpretive fluoroscopic procedures as prescribed by a LIP
➤ Performing peripherally inserted central catheter placement where state statute(s) and/or lawful institutional policy permits
➤ Applying the principles of patient safety during all aspects of radiographic procedures, including assisting and transporting patients

The ASRT describes the scope of practice for radiation therapy to include the following:
➤ Delivering radiation therapy treatments as prescribed by a radiation oncologist
➤ Performing simulation, treatment planning procedures, and dosimetric calculations as prescribed by a radiation oncologist
➤ Utilizing imaging technologies for the explicit purpose of simulation, treatment planning, and treatment delivery as prescribed by a radiation oncologist

The ASRT describes the scope of practice for sonography to include the following:
➤ Performing diagnostic ultrasound procedures or examinations upon the order of, or for diagnostic interpretation by a LIP
➤ Determining ultrasonic frequencies and appropriate transducers for the anatomic area of interest
➤ Assisting a LIP with interventional procedures such as needle localizations, aspirations, biopsies, and amniocentesis
➤ Assisting in maintaining records, respecting confidentiality and established policy
Additionally, the ASRT provides links to individual state licensure requirements for radiologic technicians on its website, available at www.asrt.org/content/GovernmentRelations/LegislativeGuidebook/IndividualStateLicensureInfo.aspx and www.asrt.org/Content/GovernmentRelations/TallyofStateLicensure.aspx.

ACR

The American College of Radiology (ACR) has no formal position statement regarding the scope of practice, training, or competency of radiologic technologists. However, the ACR does publish practice guidelines for several imaging modalities that address the role of the radiologic technologist in procedures. For more information, please visit www.acr.org/SecondaryMainMenuCategories/quality_safety/guidelines.aspx.

JRCERT

The Joint Review Committee on Education in Radiologic Technology (JRCERT) accredits formal training programs in radiography. It promotes excellence in education and enhances quality and safety of patient care through the accreditation of educational programs.

JRC-DMS

The Joint Review Committee on Education in Diagnostic Medical Sonography (JRC-DMS) was established to promote quality education standards in medical sonography. In 2010, JRC-DMS accredited 185 sonography programs.

JRC-DMS requires organizations to have a plan for education and requires the plan to include details about the program.

Learning competencies for each concentration must include the following:
- Written and oral communication
- Patient care and comfort
- Human gross and sectional anatomy
- Physiology, pathology, and pathophysiology
- Acoustic physics
- Doppler ultrasound principles
- Ultrasound instrumentation
- The interaction between ultrasound and tissue and the probability of biological effects
- Professional judgment and discretion
- Quality assurance and improvement
- Policies, protocols, and procedures for the function of the ultrasound library
- Continuing education
- Ergonomically correct scanning techniques
The general learning concentration must include the following:

➤ The ability to perform sonographic examinations of the abdomen, superficial structures, noncardiac chest, and the gravid and non-gravid pelvis according to protocol guidelines established by national professional organizations and the protocol of the employing institution, utilizing real-time equipment with both transabdominal and endocavitary transducers and Doppler display modes

➤ The ability to recognize and identify the sonographic appearance of normal anatomic structures, including anatomic variants and normal Doppler patterns in the following:

- Liver
- Biliary system
- Pancreas
- Urinary tract
- Adrenal glands
- Spleen
- Prevertebral vessels
- Peritoneal cavity, including potential spaces
- Gastrointestinal tract
- Noncardiac chest
- Neck
- Breast
- Scrotum
- Prostate
- Anterior abdominal wall
- Extremities
- Brain and spinal cord
- Musculoskeletal

➤ Identifying and documenting abnormal sonographic and Doppler patterns of disease and processes, pathology, and pathophysiology of the following structures:

- Liver
- Biliary system
- Pancreas
- Urinary tract
- Adrenal glands
- Spleen
- Prevertebral vessels
- Peritoneal cavity, including potential spaces
- Gastrointestinal tract
- Noncardiac chest
- Neck
- Breast
- Scrotum
- Prostate
– Anterior abdominal wall
– Extremities
– Brain and spinal cord
– Musculoskeletal

➤ Understanding when to modify the scanning protocol based on sonographic findings and differential diagnosis:
– History and physical examination
– Related imaging, laboratory, and functional testing procedures
– Clinical differential diagnosis
– Role of ultrasound in patient management

➤ The ability to do the following:
– Understand sonographic and Doppler patterns related to 10 different categories of diseases
– Recognize and identify the sonographic appearance of normal anatomic structures of the female pelvis
– Recognize and identify the sonographic appearance of normal maternal, embryonic, and fetal anatomic structures during the first, second, and third trimesters
– Recognize, identify, and appropriately document the sonographic appearance of gynecologic disease processes, pathology, and pathophysiology; and understand abnormal sonographic patterns
– Recognize, identify, and appropriately document the sonographic appearance of obstetric abnormalities, disease, pathology, and pathophysiology
– Demonstrate knowledge and understanding of the role of the sonographer in performing interventional/invasive procedures

The cardiac learning concentration must include the following:
➤ Demonstrate knowledge of normal and abnormal cardiac anatomy
➤ Demonstrate knowledge of normal cardiovascular physiology
➤ Demonstrate knowledge and understanding of cardiac pathology, pathophysiology, and hemodynamics in different types of cardiac disease
➤ Demonstrate knowledge and understanding of clinical cardiology
➤ Demonstrate knowledge of other cardiac procedures emphasizing indications, utility, and limitations of these procedures
➤ Demonstrate proficiency in the performance of M-mode, 2-D, and Doppler (pulsed wave, continuous wave, color flow, and power) echocardiographic studies
➤ Recognize, identify, and appropriately document the abnormal echocardiographic and Doppler patterns of disease, pathology, and pathophysiology for the disease categories listed
➤ Demonstrate knowledge and understanding of the indications, utility, limitations, and technical procedures for related echocardiographic studies
➤ Demonstrate knowledge and understanding of clinical pharmacology as it relates to echocardiography and provocative maneuvers
➤ Demonstrate knowledge, understanding, and proficiency in the use of quantitative principles applied to echocardiographic images and flow data

The vascular learning concentration must include the following:
➤ Knowledge of normal and abnormal vascular anatomy
➤ Knowledge of normal and abnormal vascular physiology
➤ Knowledge and understanding of vascular physiology, pathophysiology, and hemodynamics in the different types of vascular disease/dysfunction
➤ Knowledge and understanding of clinical vascular diagnostic procedures
➤ Knowledge of other vascular procedures emphasizing indications, utility, and limitations of these procedures
➤ Knowledge of importance and impact of other laboratory values and invasive and noninvasive testing/imaging modalities
➤ Proficiency in the performance of physiologic testing (including volume pulse recording, pressure measurements, plethysmography, and stress testing), real-time ultrasound imaging, and Doppler evaluation (pulsed and continuous wave, color and power flow) as relates to the vasculature
➤ Proficiency in the following areas:
 − Extracranial cerebrovascular
 − Intracranial cerebrovascular (transcranial Doppler)
 − Extremity arterial (upper and lower)
 − Extremity venous (upper and lower)
 − Visceral vascular (renal artery, mesenteric/splanchnic, hepatoporal)
➤ Knowledge and understanding of clinical pharmacology as it relates to vascular evaluation and stress testing
➤ Knowledge, understanding, and proficiency in the use of quantitative principles applied to vascular testing

Positions of accreditation bodies

CMS
CMS has no formal position concerning the delineation of privileges for radiologic technologists.

The Joint Commission

Note: The following is an excerpt from The Joint Commission Human Resource (HR) standards. Accredited facilities should refer to the Comprehensive Accreditation Manual for Hospitals for a complete set of HR standards.
The Joint Commission has no formal position concerning the scope of practice for radiologic technologists. The Joint Commission Comprehensive Accreditation Manual for Hospitals HR standards apply to all staff (employees, contractors, and nonemployees who provide care) who provide services in the healthcare organization.

The following Joint Commission EP has particular relevance to understanding the credentialing process for non-privileged practitioners such as the radiology technician. HR.01.02.05, EP 7, states the following: “Before providing care, treatment, and services, the hospital confirms that nonemployees who are brought into the hospital by a LIP to provide care, treatment, or services have the same qualifications and competencies required of employed individuals performing the same or similar services at the hospital.”

Two additional notes further define this EP. The first note states that the confirmation of qualifications and competencies can be accomplished through the hospital’s regular process or with the LIP who brought in the individual. The second note specifies that if the care, treatment, and services by the nonemployee are not currently performed by anyone employed by the hospital, leadership must consult appropriate professional hospital guidelines for the required credentials and competencies.

The following HR standards are also applicable:

➤ The hospital has the necessary staff to support the care, treatment, and services it provides (HR.01.01.01).

➤ The hospital defines staff qualifications specific to their job responsibilities (HR.01.02.01).

➤ The hospital verifies staff qualifications (HR.01.02.05). EPs 1–5 state that the following is verified and documented in accordance with law, regulation, and hospital policy at the time of hire and when an employee’s credentials are renewed as applicable:
 – Current license, certification, or registration
 – Education and experience
 – Criminal background check
 – Health screening

➤ The information listed in the previous bullet is used to make decisions regarding staff job responsibilities (HR.01.02.05, EP 6).

➤ The hospital determines how staff function within the organization (HR.01.02.07). EPs 1–2 state that staff who provide care, treatment, or services must possess a current license, certification, or registration if required by law and regulation and practice within the scope of that license, certification, or registration.

➤ The hospital provides orientation to staff (HR.01.04.01). EPs 1–6 state that:
 – The hospital determines the key safety content of orientation provided to staff.
- The hospital orients its staff to the key safety content before staff provide care, treatment, and services. Completion of this orientation is documented.
- The hospital orients staff on the following and documents said orientation: relevant hospitalwide and unit-specific policies and procedures; specific job duties (including those related to infection prevention and control and managing pain); sensitivity to cultural diversity based on job duties and responsibilities; and patient rights, including ethical aspects of care, treatment, and services.

➤ Staff participate in ongoing education and training (HR.01.05.03). EPs 1–13 (note that EPs 3 and 9–12 do not exist) state that staff participate in ongoing education and training and that their participation is documented to maintain or increase their competency. Additionally, staff must participate in training whenever their responsibilities change.
 - Specific to the needs of the patient population served by the hospital.
 - That incorporates the skills of team communication, collaboration, and coordination of care.
 - That includes information about the need to report unanticipated adverse events and how to report the event.
 - On fall reduction activities.
 - Education and training that addresses early warning signs of a change in a patient’s condition and how to respond to a deteriorating patient, including how and when to contact responsible clinicians, is provided by the hospital. Education is provided to staff and LIP who may request assistance and those who may respond to those requests. This education and training is documented.

➤ Staff are competent to perform their responsibilities (HR.01.06.01). EPs 1–15 (note that 7–14 do not exist) state that the hospital:
 - Defines the competencies it requires of staff who provide care.
 - Uses assessment methods to determine the individual’s competence in the skills being assessed. Methods may include test taking, return demonstration, or the use of simulation.
 - Assesses skills utilizing an individual with the educational background, experience, or related knowledge. When a suitable individual cannot be found to assess staff competence, the hospital can utilize an outside individual for this task. Alternatively, the hospital may consult the competency guidelines from an appropriate professional organization to make its assessment.
 - Conducts an initial assessment of staff competence as a part of orientation and documents this assessment.
 - Assesses and documents staff competence once every three years or more frequently as required by hospital policy or in accordance with law or regulation.
 - Takes action when a staff member’s competence does not meet expectations.

➤ The hospital evaluates staff performance (HR.01.07.01). EPs 1–3 state that the hospital:
 - Evaluates staff based on performance expectations that reflect their job responsibilities.
Supplement: Scope of practice for radiologic technologists

Practice area 184

- Evaluates staff performance and documents the evaluation once every three years or more frequently as required by hospital policy or in accordance with law or regulation.
- Reviews the individual’s competencies and performance for nonemployed individuals brought into the facility by a LIP at the same frequency as employees. This can be accomplished either with the LIP or through the hospital’s regular process.

CRC draft criteria

Healthcare organizations must understand applicable regulatory and accreditation requirements for credentialing privileged and non-privileged practitioners. This supplemental white paper cannot and does not cover all of the necessary decision points. Find additional information in the following resources:

➤ Solving the AHP Conundrum
➤ Core Privileges for AHPs, Second Edition
➤ The Comprehensive Healthcare Job Descriptions Manual

The focus of this supplemental white paper is on practitioners (e.g., radiologic technologists) who are not permitted to function independently or who are not required to be privileged through the medical staff process but must be authorized through an HR process in order to provide clinical care to patients. This process is similar or identical to one used for employed staff that ensures all individuals who are providing services in the organization are appropriately competent and trained to carry out their responsibilities.

When defining a scope of practice or job description for non-privileged practitioners, hospitals should take full advantage of internal sources, such as the job descriptions HR already utilizes for employees performing the same or similar functions.

The following draft qualifications and scope of practice are intended to serve solely as a starting point for the development of an institution’s policy regarding this practice area. This scope of practice is not meant to be all-encompassing, but rather to define the types of activities that radiologic technologists perform. Each facility may uniquely define the roles and responsibilities of a radiologic technologist as applicable to meet its needs and scopes of services and in accordance with state regulations. The customization of the qualifications (criteria) and an accompanying scope of practice should be incorporated into the hospital’s existing job description format.

Applicants must meet minimum threshold job requirements that are required to be employed as radiologic technologists. Minimum requirements may include the following:

- Evaluates staff performance and documents the evaluation once every three years or more frequently as required by hospital policy or in accordance with law or regulation.
- Reviews the individual’s competencies and performance for nonemployed individuals brought into the facility by a LIP at the same frequency as employees. This can be accomplished either with the LIP or through the hospital’s regular process.

CRC draft criteria

Healthcare organizations must understand applicable regulatory and accreditation requirements for credentialing privileged and non-privileged practitioners. This supplemental white paper cannot and does not cover all of the necessary decision points. Find additional information in the following resources:

➤ Solving the AHP Conundrum
➤ Core Privileges for AHPs, Second Edition
➤ The Comprehensive Healthcare Job Descriptions Manual

The focus of this supplemental white paper is on practitioners (e.g., radiologic technologists) who are not permitted to function independently or who are not required to be privileged through the medical staff process but must be authorized through an HR process in order to provide clinical care to patients. This process is similar or identical to one used for employed staff that ensures all individuals who are providing services in the organization are appropriately competent and trained to carry out their responsibilities.

When defining a scope of practice or job description for non-privileged practitioners, hospitals should take full advantage of internal sources, such as the job descriptions HR already utilizes for employees performing the same or similar functions.

The following draft qualifications and scope of practice are intended to serve solely as a starting point for the development of an institution’s policy regarding this practice area. This scope of practice is not meant to be all-encompassing, but rather to define the types of activities that radiologic technologists perform. Each facility may uniquely define the roles and responsibilities of a radiologic technologist as applicable to meet its needs and scopes of services and in accordance with state regulations. The customization of the qualifications (criteria) and an accompanying scope of practice should be incorporated into the hospital’s existing job description format.

Applicants must meet minimum threshold job requirements that are required to be employed as radiologic technologists. Minimum requirements may include the following:
Minimal formal training: Applicants must have completed an accredited training program in the specialty of radiologic technology for which privileges are requested
Licensing requirement: Applicants must hold a valid unrestricted license in those states that require licensure
Required current experience: Applicants must be able to demonstrate that they have provided inpatient radiologic technology services for at least 100 patients in the past 12 months
Continuous competency assessment: Applicants are subject to an [annual] competency assessment and must be able to demonstrate current clinical competence

Job summary

The scope of practice for a radiologic technologist would be defined based on the type of imaging performed, such as but not limited to the following:
➤ Receiving, relaying, and documenting verbal, written, and electronic orders in the patient’s medical record
➤ Corroborating patient’s clinical history with procedure, ensuring information is documented and available for use by a LIP
➤ Verifying informed consent
➤ Assuming responsibility for patient needs during procedures
➤ Preparing patients for procedures
➤ Applying principles of ALARA to minimize exposure to patient, self, and others
➤ Performing venipuncture as prescribed by a LIP
➤ Starting and maintaining IV access as prescribed by a LIP
➤ Identifying, preparing, and/or administering medications as prescribed by a LIP
➤ Evaluating images for technical quality, ensuring proper identification is recorded
➤ Identifying and managing emergency situations
➤ Providing education
➤ Educating and monitoring students and other healthcare providers
➤ Performing ongoing quality assurance activities

The scope of practice for cardiovascular interventional radiologic technologists includes the following:
➤ Performing cardiovascular interventional procedures as prescribed by a LIP
➤ Determining radiographic technique exposure factors
➤ Assisting a LIP with fluoroscopic and specialized interventional radiography procedures
➤ Performing non-interpretive fluoroscopic procedures as prescribed by a LIP
➤ Starting and maintaining intra-arterial access as prescribed by a LIP
➤ Participating in physiologic monitoring of patients
➤ Performing manual and mechanical hemostasis, including the use of closure devices, as prescribed by a LIP
➤ Placing, maintaining, and removing peripherally inserted central catheters as prescribed by a LIP

The scope of practice for CT technologists includes the following:
➤ Introducing oneself appropriately to the patient and putting the patient at ease
➤ Performing CT procedures as prescribed by a LIP
➤ Assisting with interventional CT procedures and applying appropriate aseptic surgical technique as needed, following the direction of a LIP
➤ Maintaining archival storage of digitized data as appropriate and documenting patient dose exposures
➤ Assisting in maintaining patient records, respecting confidentiality and established policy

The scope of practice for limited x-ray machine operators includes the following:
➤ Performing radiographic procedures, limited to education or the specific area of anatomical interest based on training and licensure/certification, as prescribed by a LIP
➤ Assisting a LIP or radiologic technologist during radiographic procedures
➤ Determining radiographic technique exposure factors
➤ Evaluating images for positioning, centering, appropriate anatomy, and overall image quality
➤ Assisting the LIP or radiologic technologist in providing patient education
➤ Applying the principles of patient safety during all aspects of radiographic procedures, including assisting and transporting patients

The scope of practice for MRI technologists includes the following:
➤ Performing procedures or examinations under the order of a LIP for diagnostic interpretation or therapeutic intervention
➤ Applying principles of MR safety to minimize risk to patient, self, and others
➤ Selecting appropriate pulse sequences with consideration given to established protocols and other factors influencing data acquisition parameters
➤ Assisting the LIP with interventional procedures
➤ Manipulating and reconstructing digital data for display or hard copy records, ensuring proper identification is evident
➤ Maintaining archival storage of digital data as appropriate

The scope of practice for mammography technologists includes the following:
➤ Performing breast imaging procedures
➤ Determining radiographic technique exposure factors
➤ Performing radiography of pathologic breast specimens
➤ Providing or assisting with physical breast inspection or palpation
➤ Assisting in maintaining medical records, respecting confidentiality and established policy
The scope of practice for radiographers includes the following:
➤ Performing diagnostic radiographic procedures
➤ Determining radiographic technique exposure factors
➤ Assisting a LIP with fluoroscopic and specialized interventional radiography procedures
➤ Performing non-interpretive fluoroscopic procedures as prescribed by a LIP
➤ Performing peripherally inserted central catheter placement where state statute(s) and/or lawful institutional policy permits
➤ Applying the principles of patient safety during all aspects of radiographic procedures, including assisting and transporting patients

The scope of practice for radiation therapy technologists includes the following:
➤ Delivering radiation therapy treatments as prescribed by a radiation oncologist
➤ Performing simulation, treatment planning procedures, and dosimetric calculations as prescribed by a radiation oncologist
➤ Utilizing imaging technologies for the explicit purpose of simulation, treatment planning, and treatment delivery as prescribed by a radiation oncologist

The scope of practice for ultrasonographers includes the following:
➤ Performing diagnostic ultrasound procedures or examinations upon the order of, or for diagnostic interpretation by a LIP
➤ Determining ultrasonic frequencies and appropriate transducers for the anatomic area of interest
➤ Assisting a LIP with interventional procedures such as needle localizations, aspirations, biopsies, and amniocentesis
➤ Assisting in maintaining records, respecting confidentiality and established policy

For more information

American College of Radiology
1891 Preston White Drive
Reston, VA 20191
Telephone: 703/648-8900
Website: www.acr.org

American Registry for Diagnostic Medical Sonography
51 Monroe Street, Plaza East One
Rockville, MD 20850-2400
Telephone: 301/738-8401
Fax: 301/738-0312
Website: www.ardms.org
American Registry of Radiologic Technologists
1225 Northland Drive
St. Paul, MN 55120-1155
Telephone: 651/687-0048
Fax: 651/687-0349
Website: www.arrt.org

American Society of Radiologic Technologists
15000 Central Avenue SE
Albuquerque, NM 87123-3917
Telephone: 505/298-4500
Fax: 505/298-5063
Website: www.asrt.org

The Joint Commission
One Renaissance Boulevard
Oakbrook Terrace, IL 60181
Telephone: 630/792-5000
Fax: 630/792-5005
Website: www.jcaho.org

Joint Review Committee on Education in Diagnostic Medical Sonography
6021 University Boulevard, Suite 500
Ellicott City, MD 21043
Telephone: 443/973-3251
Fax: 866/738-3444
Website: www.jrcdms.org

Joint Review Committee on Education in Radiologic Technology
20 North Wacker Drive, Suite 900
Chicago, IL 60606-2901
Telephone: 312/704-5300
Fax: 312/704-5304
Website: www.jrcert.org
Supplement: Scope of practice for radiologic technologists

Practice area 184

The information contained in this document is general. It has been designed and is intended for use by hospitals and their credentials committees in developing their own local approaches and policies for various credentialing issues. This information, including the materials, opinions, and draft criteria set forth herein, should not be adopted for use without careful consideration, discussion, additional research by physicians and counsel in local settings, and adaptation to local needs. The Credentialing Resource Center does not provide legal or clinical advice; for such advice, the counsel of competent individuals in these fields must be obtained.

Reproduction in any form outside the recipient’s institution is forbidden without prior written permission. Copyright © 2012 HCPro, Inc., Danvers, MA 01923.